login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Result of using the primes as coefficients in an infinite polynomial series in x and then expressing this series as (1+x)(1+a(1)*x)(1+a(2)*x^2) ... .
10

%I #6 Sep 05 2014 20:52:12

%S 1,2,1,3,2,-4,2,5,4,-6,4,4,10,-36,18,45,34,-72,64,-24,124,-358,258,

%T 170,458,-1260,916,148,1888,-4296,3690,887,7272,-17616,14718,-5096,

%U 29610,-67164,58722,-26036,119602,-244496,242256,-104754,487352,-1029384

%N Result of using the primes as coefficients in an infinite polynomial series in x and then expressing this series as (1+x)(1+a(1)*x)(1+a(2)*x^2) ... .

%C This is the PPE (power product expansion) of A036467. - _R. J. Mathar_, Feb 01 2010

%H H. Gingold, <a href="http://www.ams.org/mathscinet-getitem?mr=1068511">A note on reduction of operations via power product approximations</a>, Utilitas Math. 37 (1990), 79-89. [From _R. J. Mathar_, Nov 10 2008]

%H H. Gingold and A. Knopfmacher, <a href="http://www.ams.org/mathscinet-getitem?mr=1370515">Analytic properties of power product expansions</a>, Canad. J. Math. 47 (1995), 1219-1239. [From _R. J. Mathar_, Nov 10 2008]

%H H. Gingold, A. Knopfmacher and D. Lubinsky, <a href="http://www.ams.org/mathscinet-getitem?mr=1245748">The zero distribution of the partial products of power product expansions</a>, Analysis 13 (1993), 133-157. [From _R. J. Mathar_, Nov 10 2008]

%e From the primes, construct the series 1+2x+3x^2+5x^3+7x^4+... Divide this by (1+x) to get the quotient (1+a(1)x+...), which here gives a(1)=1. Then divide this quotient by (1+a(1)x), i.e. here (1+x), to get (1+a(2)x^2+...), giving a(2)=2.

%p From _R. J. Mathar_, Feb 01 2010: (Start)

%p # Partition n into a set of distinct positive integers, the maximum one

%p # being m.

%p # Example: partitionsQ(7,5) returns [[2,5],[3,4],[1,2,4]] ;

%p # Richard J. Mathar, 2008-11-10

%p partitionsQ := proc(n,m)

%p local p,t,rec,q;

%p p := [] ;

%p # take 't' of the n and recursively determine the partitions of

%p # what has been left over.

%p for t from min(m,n) to 1 by -1 do

%p # Since we are only considering partitions into distinct parts,

%p # the triangular numbers set a lower bound on the t.

%p if t*(t+1)/2 >= n then

%p rec := partitionsQ(n-t,t-1) ;

%p if nops(rec) = 0 then

%p p := [op(p),[t]] ;

%p else

%p for q in rec do

%p p := [op(p),[op(q),t]] ;

%p end do:

%p end if;

%p end if;

%p end do:

%p RETURN(p) ;

%p end proc:

%p # Power product expansion of L.

%p # L is a list starting with 1, which is considered L[0].

%p # Returns the list [a(1),a(2),..] such that

%p # product_(i=1,2,..) (1+a(i)x^i) = sum_(j=0,1,2,...) L[j]x^j.

%p # Richard J. Mathar, 2008-11-10

%p ppe := proc(L)

%p local pro,i,par,swithi,snoti,m,p,k ;

%p pro := [] ;

%p for i from 1 to nops(L)-1 do

%p par := partitionsQ(i,i) ;

%p swithi := 0 ;

%p snoti := 0 ;

%p for p in par do

%p if i in p then

%p m := 1 ;

%p for k from 1 to nops(p)-1 do

%p m := m*op(op(k,p),pro) ;

%p end do;

%p swithi := swithi+m ;

%p else

%p snoti := snoti+mul( op(k,pro),k=p) ;

%p end if;

%p end do:

%p pro := [op(pro), (op(i+1,L)-snoti)/swithi] ;

%p end do:

%p RETURN(pro) ;

%p end proc:

%p read("transforms") ;

%p A147541 := proc(nmax)

%p local L,L1,L2 ;

%p L := [1,seq(ithprime(n),n=1..nmax)] ;

%p L1 := [seq((-1)^n,n=0..nmax+10)] ;

%p A036467 := CONV(L,L1) ;

%p ppe(A036467) ;

%p end:

%p A147541(47) ;

%p (End)

%Y Cf. A000040, A147542.

%K sign

%O 1,2

%A _Neil Fernandez_, Nov 06 2008

%E Extended by _R. J. Mathar_, Feb 01 2010