login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147539
Numbers whose binary representation is the concatenation of n 1's, 2n-1 digits 0 and n 1's.
6
5, 99, 1799, 30735, 507935, 8257599, 133169279, 2139095295, 34292630015, 549218943999, 8791798056959, 140703128621055, 2251524935786495, 36026597995724799, 576443160117411839, 9223231299366486015
OFFSET
1,1
COMMENTS
a(n) is the number whose binary representation is A138120(n).
FORMULA
a(n) = 2^n - 1 + 2^(4*n-1) - 2^(3*n-1). - R. J. Mathar, Nov 09 2008
G.f.: x*(5 -36*x +136*x^2)/((1-x)*(1-2*x)*(1-8*x)*(1-16*x)). - Colin Barker, Nov 04 2012
a(n) = 27*a(n-1) - 202*a(n-2) + 432*a(n-3) - 256*a(n-4). - Wesley Ivan Hurt, Jan 11 2017
MAPLE
A147539:=n->2^n-1+2^(4*n-1)-2^(3*n-1): seq(A147539(n), n=1..30); # Wesley Ivan Hurt, Jan 11 2017
MATHEMATICA
Table[FromDigits[Join[Table[1, {n}], Table[0, {2n - 1}], Table[1, {n}]], 2], {n, 1, 20}] (* Stefan Steinerberger, Nov 11 2008 *)
LinearRecurrence[{27, -202, 432, -256}, {5, 99, 1799, 30735}, 20] (* Harvey P. Dale, Aug 28 2017 *)
PROG
(Magma) [2^n-1+2^(4*n-1)-2^(3*n-1) : n in [1..20]]; // Wesley Ivan Hurt, Jan 11 2017
(PARI) vector(20, n, 2^(4*n-1) -2^(3*n-1) +2^n -1) \\ G. C. Greubel, Jan 12 2020
(Sage) [2^(4*n-1) -2^(3*n-1) +2^n -1 for n in (1..20)] # G. C. Greubel, Jan 12 2020
(GAP) List([1..20], n-> 2^(4*n-1) -2^(3*n-1) +2^n -1); # G. C. Greubel, Jan 12 2020
CROSSREFS
Cf. A138120.
Sequence in context: A301307 A277418 A318061 * A266610 A156276 A322715
KEYWORD
base,easy,nonn
AUTHOR
Omar E. Pol, Nov 06 2008
EXTENSIONS
Extended by R. J. Mathar and Stefan Steinerberger, Nov 09 2008
STATUS
approved