login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301307
G.f.: Sum_{n>=0} (1 + (1+x)^n)^n / 3^(n+1).
2
1, 5, 98, 3239, 150176, 8958473, 653364947, 56325265925, 5603297711741, 631787569243643, 79620187792726844, 11090608163844996365, 1692024644610151317068, 280593919265423518611017, 50255068227934275890880470, 9667645123441963396364779439, 1988058929295585346059732920903, 435204469378969786061222253686549, 101044871217450582545711556498557285
OFFSET
0,2
LINKS
FORMULA
G.f.: Sum_{n>=0} (1+x)^(n^2) / (3 - (1+x)^n)^(n+1).
G.f.: Sum_{n>=0} Sum_{k=0..n} binomial(n,k) * (1 + x)^(n*k) / 3^(n+1).
a(n) = Sum_{j>=0} Sum_{k=0..j} binomial(j, k) * binomial(j*k, n) / 3^(j+1).
a(n) ~ c * d^n * n^n, where d = 4.88100884940898277361223446294548499145552953621086588549015342712172151... and c = 1.0401387348267211789387929284813380774183533880659572052994951... - Vaclav Kotesovec, Mar 22 2018
EXAMPLE
G.f.: A(x) = 1 + 5*x + 98*x^2 + 3239*x^3 + 150176*x^4 + 8958473*x^5 + 653364947*x^6 + 56325265925*x^7 + 5603297711741*x^8 + ...
such that
A(x) = 1/3 + (1 + (1+x))/3^2 + (1 + (1+x)^2)^2/3^3 + (1 + (1+x)^3)^3/3^4 + (1 + (1+x)^4)^4/3^5 + (1 + (1+x)^5)^5/3^6 + (1 + (1+x)^6)^6/3^7 + ...
Also,
A(x) = 1/2 + (1+x)/(3 - (1+x))^2 + (1+x)^4/(3 - (1+x)^2)^3 + (1+x)^9/(3 - (1+x)^3)^4 + (1+x)^16/(3 - (1+x)^4)^5 + (1+x)^25/(3 - (1+x)^5)^6 + ...
CROSSREFS
Cf. A301312.
Sequence in context: A093749 A197474 A332695 * A277418 A318061 A147539
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 21 2018
STATUS
approved