login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A301309
G.f.: Sum_{n>=0} ( (1+x)^n + (1-x)^n )^n / 2^(2*n+1), an even function.
2
1, 5, 418, 97248, 44494788, 33701146040, 38158722166012, 60370440881763184, 127193089522406873576, 344265367844128036044688, 1164086577885251318385747568, 4808913945776510766505317067088, 23831677319262549731059823149874928, 139543211306816620890086979219586374480, 953076439362156646686630002626476525309552
OFFSET
0,2
COMMENTS
Is there a finite expression for the terms of this sequence?
LINKS
FORMULA
G.f.: Sum_{n>=0} [ Sum_{k=0..[n/2]} binomial(n,2*k) * x^(2*k) ]^n / 2^(n+1).
a(n) ~ c * d^n * n!^2 / n, where d = 37.4848548470528901759474480740698513182712... and c = 0.1647617452257182061114277957479516654825... - Vaclav Kotesovec, Oct 07 2020
EXAMPLE
G.f.: A(x) = 1 + 5*x^2 + 418*x^4 + 97248*x^6 + 44494788*x^8 + 33701146040*x^10 + 38158722166012*x^12 + 60370440881763184*x^14 + ...
such that
A(x) = 1/2 + ((1+x) + (1-x))/2^3 + ((1+x)^2 + (1-x)^2)^2/2^5 + ((1+x)^3 + (1-x)^3)^3/2^7 + ((1+x)^4 + (1-x)^4)^4/2^9 + ((1+x)^5 + (1-x)^5)^5/2^11 + ...
Equivalently,
A(x) = 1/2 + 1/2^2 + (1 + x^2)^2/2^3 + (1 + 3*x^2)^3/2^4 + (1 + 6*x^2 + x^4)^4/2^5 + (1 + 10*x^2 + 5*x^4)^5/2^6 + (1 + 15*x^2 + 15*x^4 + x^6)^6/2^7 + ...
CROSSREFS
Sequence in context: A216089 A201887 A365370 * A218406 A217939 A147684
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 18 2018
STATUS
approved