login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers whose binary representation is the concatenation of n 1's, 2n-1 digits 0 and n 1's.
6

%I #21 Sep 08 2022 08:45:38

%S 5,99,1799,30735,507935,8257599,133169279,2139095295,34292630015,

%T 549218943999,8791798056959,140703128621055,2251524935786495,

%U 36026597995724799,576443160117411839,9223231299366486015

%N Numbers whose binary representation is the concatenation of n 1's, 2n-1 digits 0 and n 1's.

%C a(n) is the number whose binary representation is A138120(n).

%H G. C. Greubel, <a href="/A147539/b147539.txt">Table of n, a(n) for n = 1..800</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (27,-202,432,-256).

%F a(n) = 2^n - 1 + 2^(4*n-1) - 2^(3*n-1). - _R. J. Mathar_, Nov 09 2008

%F G.f.: x*(5 -36*x +136*x^2)/((1-x)*(1-2*x)*(1-8*x)*(1-16*x)). - _Colin Barker_, Nov 04 2012

%F a(n) = 27*a(n-1) - 202*a(n-2) + 432*a(n-3) - 256*a(n-4). - _Wesley Ivan Hurt_, Jan 11 2017

%p A147539:=n->2^n-1+2^(4*n-1)-2^(3*n-1): seq(A147539(n), n=1..30); # _Wesley Ivan Hurt_, Jan 11 2017

%t Table[FromDigits[Join[Table[1, {n}], Table[0, {2n - 1}], Table[1, {n}]], 2], {n, 1, 20}] (* _Stefan Steinerberger_, Nov 11 2008 *)

%t LinearRecurrence[{27,-202,432,-256},{5,99,1799,30735},20] (* _Harvey P. Dale_, Aug 28 2017 *)

%o (Magma) [2^n-1+2^(4*n-1)-2^(3*n-1) : n in [1..20]]; // _Wesley Ivan Hurt_, Jan 11 2017

%o (PARI) vector(20, n, 2^(4*n-1) -2^(3*n-1) +2^n -1) \\ _G. C. Greubel_, Jan 12 2020

%o (Sage) [2^(4*n-1) -2^(3*n-1) +2^n -1 for n in (1..20)] # _G. C. Greubel_, Jan 12 2020

%o (GAP) List([1..20], n-> 2^(4*n-1) -2^(3*n-1) +2^n -1); # _G. C. Greubel_, Jan 12 2020

%Y Cf. A138120.

%K base,easy,nonn

%O 1,1

%A _Omar E. Pol_, Nov 06 2008

%E Extended by _R. J. Mathar_ and _Stefan Steinerberger_, Nov 09 2008