login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048879 Generalized Pellian with second term of 10. 2
1, 10, 41, 174, 737, 3122, 13225, 56022, 237313, 1005274, 4258409, 18038910, 76414049, 323695106, 1371194473, 5808472998, 24605086465, 104228818858, 441520361897, 1870310266446, 7922761427681, 33561355977170, 142168185336361, 602234097322614 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (4,1)

FORMULA

a(n) = ((8+sqrt(5))*(2+sqrt(5))^n - (8-sqrt(5))*(2-sqrt(5))^n)2*sqrt(5).

From Philippe Deléham, Nov 03 2008: (Start)

a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=10.

G.f.: (1+6*x)/(1-4*x-x^2). (End)

For n >= 1, a(n) equals the denominator of the continued fraction [4, 4, ..., 4, 10] (with n copies of 4). The numerator of that continued fraction is a(n+1). - ZhenShu Luan, Aug 05 2019

MAPLE

with(combinat): a:=n->6*fibonacci(n-1, 4)+fibonacci(n, 4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008

MATHEMATICA

LinearRecurrence[{4, 1}, {1, 10}, 30] (* Harvey P. Dale, Jul 18 2011 *)

PROG

(Haskell)

a048879 n = a048879_list !! n

a048879_list = 1 : 10 : zipWith (+)

a048879_list (map (* 4) $ tail a048879_list)

-- Reinhard Zumkeller, Mar 03 2014

CROSSREFS

Cf. A015448, A001077, A001076, A033887.

Sequence in context: A294604 A061003 A211064 * A221805 A089211 A220927

Adjacent sequences: A048876 A048877 A048878 * A048880 A048881 A048882

KEYWORD

easy,nice,nonn

AUTHOR

Barry E. Williams

EXTENSIONS

More terms from Harvey P. Dale, Jul 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 19:21 EDT 2023. Contains 361528 sequences. (Running on oeis4.)