login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294604
Number of ordinary double points of a family of threefolds.
0
10, 41, 120, 283, 566, 1029, 1738, 2745, 4150, 6049, 8504, 11661, 15646, 20525, 26496, 33715, 42246, 52345, 64198, 77861, 93654, 111793, 132320, 155625, 181954, 211329, 244216, 280891, 321350, 366141, 415570, 469601, 528870, 593713, 664056, 740629, 823798, 913445, 1010400, 1115059, 1227254
OFFSET
3,1
COMMENTS
The degree-n projective algebraic threefolds have been obtained from a class of polynomials introduced for the construction of nodal surfaces. The threefolds have ordinary double points as their only singularities.
LINKS
J. G. Escudero, A construction of algebraic surfaces with many real nodes, arXiv:1107.3401 [math-ph], 2011.
J. G. Escudero, A construction of algebraic surfaces with many real nodes, Annali di Matematica Pura ed Applicata, 195 (2016), 575-583.
J. G. Escudero, The root lattice A2 in the construction of substitution tilings and singular hypersurfaces, Springer Proceedings in Mathematics and Statistics, 198 (2017), 101-117.
FORMULA
a(n) = (1/18)*(7*n^4 - 24*n^3 + 39*n^2 - 36*n + 18) if n is divisible by 3; a(n) = (1/18)*(7*n^4 - 24*n^3 + 37*n^2 - 30*n + 10) otherwise. For n = 3, 4, 5, ...
Conjectures from Colin Barker, Nov 04 2017: (Start)
G.f.: x^3*(10 + 21*x + 48*x^2 + 54*x^3 + 57*x^4 + 36*x^5 + 24*x^6 + x^7 + 2*x^8 - 2*x^9 + x^10) / ((1 - x)^5*(1 + x + x^2)^3).
a(n) = 2*a(n-1) - a(n-2) + 3*a(n-3) - 6*a(n-4) + 3*a(n-5) - 3*a(n-6) + 6*a(n-7) - 3*a(n-8) + a(n-9) - 2*a(n-10) + a(n-11) for n > 10.
(End)
MAPLE
alpha := n -> (7*n^4-24*n^3+39*n^2-36*n+18)/18:
a := n -> `if`(modp(n, 3)=0, alpha(n), alpha(n)-((n-2)^2+n)/9):
seq(a(n), n=3..43); # Peter Luschny, Nov 04 2017
MATHEMATICA
alpha[n_] := (7*n^4 - 24*n^3 + 39*n^2 - 36*n + 18)/18;
a[n_] := If[Mod[n, 3] == 0, alpha[n], alpha[n] - ((n-2)^2 + n)/9];
Table[a[n], {n, 3, 43}] (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
CROSSREFS
Sequence in context: A006323 A178073 A102784 * A061003 A211064 A048879
KEYWORD
nonn
AUTHOR
Juan G. Escudero, Nov 04 2017
STATUS
approved