login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294603
Number of words of semilength n over n-ary alphabet, either empty or beginning with the first letter of the alphabet, such that the index set of occurring letters is an integer interval [1, k], that can be built by repeatedly inserting doublets into the initially empty word.
3
1, 1, 3, 20, 231, 3864, 85360, 2353546, 77963599, 3019479344, 133966276692, 6702399275538, 373406941221160, 22930441709648290, 1539004344848618466, 112089683771614695478, 8805334896381292460191, 742162775145283382779168, 66809386370870410069346476
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} A256116(n,k).
EXAMPLE
a(0) = 1: the empty word.
a(1) = 1: aa.
a(2) = 3: aaaa, aabb, abba.
a(3) = 20: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, aabbcc, aabccb, aacbbc, aaccbb, abaaba, abbaaa, abbabb, abbacc, abbbba, abbcca, abccba, acbbca, accabb, accbba.
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
add(binomial(2*n, j) *(n-j) *(k-1)^j, j=0..n-1))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)/`if`(k=0, 1, k)
end:
a:= n-> add(T(n, k), k=0..n):
seq(a(n), n=0..20);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*
Sum[Binomial[2*n, j]*(n-j) *If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
T[n_, k_] := T[n, k] =
Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]/If[k == 0, 1, k];
a[n_] := Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
CROSSREFS
Row sums of A256116.
Cf. A258498.
Sequence in context: A119758 A108527 A194972 * A240957 A335871 A195135
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 03 2017
STATUS
approved