login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119758
Numerator of Sum_{k=1..n} k^n/n^k.
1
1, 3, 20, 225, 3789, 89341, 2821552, 115377921, 5939637425, 375840753541, 28641787322796, 2583828842108449, 271949027324094925, 32986652806128680205, 4563200871898056653504, 713455071424061222336513
OFFSET
1,2
COMMENTS
a(p-1) is divisible by prime p>2. a(p) is divisible by ((p+1)/2)^2 for prime p>2.
Denominator of Sum[k^n/n^k,{k,1,n}] is equal to n^(n-1) = A000169(n). - Alexander Adamchuk, Jun 27 2006
FORMULA
a(n) = numerator(Sum_{k=1..n} k^n/n^k).
a(n) = n^(n-1)*(Sum_{k=1..n} k^n/n^k). - Alexander Adamchuk, Jun 27 2006
a(2m) is divisible by 2m+1 for integer m>0. a(2m-1) is divisible by m^2 for integer m>0. - Alexander Adamchuk, Jun 27 2006
MATHEMATICA
Table[Numerator[Sum[k^n/n^k, {k, 1, n}]], {n, 1, 20}]
Table[Sum[k^n/n^k, {k, 1, n}]*n^(n-1), {n, 1, 50}] (* Alexander Adamchuk, Jun 27 2006 *)
PROG
(PARI) a(n) = numerator(prod(k=2, n, 1-1/(prime(k)-1)^2)); \\ Michel Marcus, May 31 2022
CROSSREFS
Cf. A000169.
Sequence in context: A052851 A262233 A058477 * A108527 A194972 A294603
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jun 18 2006, Jun 25 2006
STATUS
approved