login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052851
Expansion of e.g.f. 1/2 - (1/2)*(1+4*log(1-x))^(1/2).
9
0, 1, 3, 20, 220, 3424, 69008, 1706256, 49956240, 1689497376, 64799254752, 2778906776832, 131756614920192, 6843405231815424, 386414606189283072, 23567401521343170048, 1543994621969805135360, 108137637714495023354880, 8062825821198926369725440
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
FORMULA
E.g.f.: 1/2 - (1/2)*(1-4*log(-1/(-1+x)))^(1/2).
a(n) = Sum_{k=1..n} Stirling1(n,k)*k!*C(2*k-2,k-1)/k*(-1)^(n+k). - Vladimir Kruchinin, May 12 2012
a(n) ~ n^(n-1)/(sqrt(2)*exp(3*n/4)*(exp(1/4)-1)^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
From Seiichi Manyama, Sep 09 2024: (Start)
E.g.f. satisfies A(x) = (-log(1 - x)) / (1 - A(x)).
E.g.f.: Series_Reversion( 1 - exp(-x * (1 - x)) ). (End)
MAPLE
spec := [S, {B=Cycle(Z), S=Prod(B, C), C=Sequence(S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[1/2-1/2*(1+4*Log[1-x])^(1/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
PROG
(Maxima) a(n):=sum(stirling1(n, k)*k!*binomial(2*k-2, k-1)/k*(-1)^(n+k), k, 1, n); /* Vladimir Kruchinin, May 12 2012 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f., Vaclav Kotesovec, Sep 30 2013
STATUS
approved