login
A376042
E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^2)) / (1 - A(x)).
4
0, 1, 7, 116, 3092, 114034, 5378396, 309151968, 20964872624, 1638608258904, 145038615271512, 14340344355439200, 1566483453363376896, 187355848936261332144, 24351019737412176648576, 3417500066845923960657408, 515071814323666902383222784
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (2*n+2*k-2)!/(2*n+k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x)^2 * (1 - exp(-x * (1 - x))) ).
PROG
(PARI) a(n) = sum(k=1, n, (2*n+2*k-2)!/(2*n+k-1)!*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 07 2024
STATUS
approved