login
A376041
E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^3)) / (1 - A(x)).
6
0, 1, 9, 191, 6496, 305164, 18317390, 1339293822, 115492112640, 11476262240520, 1291250885222592, 162271449317302632, 22528350072978189600, 3424249337820235241472, 565573503590604522245136, 100864333223422171393303488, 19317041144591537348567168256
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (3*n+2*k-2)!/(3*n+k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x)^3 * (1 - exp(-x * (1 - x))) ).
PROG
(PARI) a(n) = sum(k=1, n, (3*n+2*k-2)!/(3*n+k-1)!*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 07 2024
STATUS
approved