login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A376038
E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^3)) * (1 - A(x))^2.
3
0, 1, 3, 29, 466, 10444, 300296, 10539738, 436831368, 20879226240, 1130604893016, 68406042884376, 4573574072262240, 334855813955693952, 26645202689658107712, 2289609993045578793120, 211302073839493597484160, 20844012997702684830894336
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (3*n-k-2)!/(3*n-2*k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x)^3 * (1 - exp(-x / (1 - x)^2)) ).
PROG
(PARI) a(n) = sum(k=1, n, (3*n-k-2)!/(3*n-2*k-1)!*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 07 2024
STATUS
approved