login
A376035
E.g.f. satisfies A(x) = exp(x / (1 - A(x))^3) - 1.
2
0, 1, 7, 118, 3205, 120466, 5790619, 339216046, 23443311049, 1867308836986, 168435092561671, 16971155810393302, 1889194092179682061, 230257485553145337106, 30496977601634473249363, 4361533380688447142658046, 669865656003334085318195089
OFFSET
0,3
FORMULA
E.g.f.: Series_Reversion( (1 - x)^3 * log(1+x) ).
a(n) = Sum_{k=1..n} (3*n+k-2)!/(3*n-1)! * Stirling2(n,k).
a(n) ~ 3^(4*n-2) * LambertW(2*exp(1/3)/3)^(3*n-1) * n^(n-1) / (sqrt(1 + LambertW(2*exp(1/3)/3)) * exp(n) * 2^(3*n-1) * (3*LambertW(2*exp(1/3)/3) - 1)^(4*n-1)). - Vaclav Kotesovec, Sep 10 2024
MATHEMATICA
Table[Sum[(3*n+k-2)!/(3*n-1)! * StirlingS2[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 10 2024 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(serreverse((1-x)^3*log(1+x)))))
(PARI) a(n) = sum(k=1, n, (3*n+k-2)!/(3*n-1)!*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 07 2024
STATUS
approved