login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163202 Alternating sum of the cubes of the first n odd-indexed Fibonacci numbers. 5
0, -1, 7, -118, 2079, -37225, 667744, -11981593, 214999407, -3858003766, 69229057975, -1242265012561, 22291541096832, -400005474543793, 7177807000202839, -128800520527828150, 2311231562497354959, -41473367604415793593, 744209385316963976032, -13354295568100875681481 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Natural bilateral extension (brackets mark index 0): ..., -37225, 2079, -118, 7, -1, [0], -1, 7, -118, 2079, -37225, ... This is A163202-reversed followed by A163202, without repeating the 0. That is, A163202(-n) = A163202(n). Thus A163202(n) is an even function of n.

LINKS

Table of n, a(n) for n=0..19.

Index entries for linear recurrences with constant coefficients, signature (-20, -35, 35, 20, 1).

FORMULA

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).

a(n) = sum_{k=1..n} (-1)^k F(2k-1)^3.

Closed form: (1/50)(L(6n) + 6 L(2n) - 14) if n is even; -(1/50)(L(6n) + 6 L(2n) + 14) if n is odd.

Factored closed form: (1/10) F(n)^2 (L(4 n) + 2 L(2n) + 9) if n is even; -(1/10) F(n)^2 (L(4 n) - 2 L(2n) + 9) if n is odd.

Recurrence: a(n) + 21 a(n-1) + 56 a(n-2) + 21 a(n-3) + a(n-4) = -28.

Recurrence: a(n) + 20 a(n-1) + 35 a(n-2) - 35 a(n-3) - 20 a(n-4) - a(n-5) = 0.

G.f.: A(x) = (-x - 13 x^2 - 13 x^3 - x^4)/(1 + 20 x + 35 x^2 - 35 x^3 - 20 x^4 - x^5) = -x(1 + x)(1 + 12 x +x^2)/((1 - x)(1 + 3 x + x^2)(1 + 18 x + x^2)).

a(-n) = a(n). - Michael Somos, Aug 11 2009

EXAMPLE

-x + 7*x^2 - 118*x^3 + 2079*x^4 - 37225*x^5 + 667744*x^6 - 11981593*x^7 + ... - Michael Somos, Aug 11 2009

MATHEMATICA

a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k-1]^3, {k, 1, n} ], Sum[ (-1)^k Fibonacci[-2k+1]^3, {k, 1, -n} ] ]

Join[{0}, Accumulate[Times@@@Partition[Riffle[Take[Fibonacci[Range[41]], {1, -1, 2}]^3, {-1, 1}], 2]]] (* or *) LinearRecurrence[{-20, -35, 35, 20, 1}, {0, -1, 7, -118, 2079}, 20] (* Harvey P. Dale, Feb 19 2012 *)

PROG

(PARI) {a(n) = ((-1)^n * (fibonacci(6*n) / 2 + fibonacci(6*n - 1) + 3*fibonacci(2*n - 1) + 3*fibonacci(2*n + 1)) - 7) / 25} /* Michael Somos, Aug 11 2009 */

CROSSREFS

Cf. A163198, A163200, A163201, A119284.

Sequence in context: A009696 A218049 A097202 * A213112 A266482 A076283

Adjacent sequences:  A163199 A163200 A163201 * A163203 A163204 A163205

KEYWORD

sign,easy

AUTHOR

Stuart Clary, Jul 24 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 19:19 EST 2016. Contains 278770 sequences.