login
A163201
Alternating sum of the cubes of the first n even-indexed Fibonacci numbers.
5
0, -1, 26, -486, 8775, -157600, 2828384, -50754249, 910750554, -16342762150, 293258984975, -5262319011456, 94428483336576, -1694450381348881, 30405678381733850, -545607760491930150, 9790534010478427479, -175684004428133950624, 3152521545695969823584, -56569703818099420107225
OFFSET
0,3
COMMENTS
Natural bilateral extension (brackets mark index 0): ..., 8775, -486, 26, -1, 0, [0], -1, 26, -486, 8775, -157600, ... This is A163201-reversed followed by A163201. That is, a(-n) = a(n-1).
LINKS
Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. For the factored closed form, let alpha equal the imaginary unit in Equation (21).
FORMULA
Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = Sum_{k=1..n} (-1)^k F(2k)^3.
a(n) = (1/50)*(L(6n+3) - 6 L(2n+1) + 2) if n is even.
a(n) = -(1/50)*(L(6n+3) - 6 L(2n+1) - 2) if n is odd.
a(n) = (1/2) * F(n)^2 * F(n+1)^2 * (L(2n+1) + 2) if n is even.
a(n) = -(1/2) * F(n)^2 * F(n+1)^2 * (L(2n+1) - 2) if n is odd.
a(n) + 21*a(n-1) + 56*a(n-2) + 21*a(n-3) + a(n-4) = 4.
a(n) + 20*a(n-1) + 35*a(n-2) - 35*a(n-3) - 20*a(n-4) - a(n-5) = 0.
G.f.: (-x + 6*x^2 - x^3)/(1 + 20*x + 35*x^2 - 35*x^3 - 20*x^4 - x^5) = -x*(1 - 6*x + x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)).
MATHEMATICA
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k]^3, {k, 1, n} ], -Sum[ (-1)^k Fibonacci[-2k]^3, {k, 1, -n - 1} ] ]
LinearRecurrence[{-20, -35, 35, 20, 1}, {0, -1, 26, -486, 8775}, 50] (* or *) Table[(-1)^n*(1/50)*(LucasL[6 n + 3] - 6 LucasL[2 n + 1] + 2*(-1)^n), {n, 0, 25}] (* G. C. Greubel, Dec 10 2016 *)
PROG
(PARI) concat([0], Vec(-x*(1 - 6*x + x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 10 2016
(Magma) [(-1)^n*(1/50)*(Lucas(6*n+3)-6*Lucas(2*n+1)+2*(-1)^n): n in [0..20]]; // Vincenzo Librandi, Dec 10 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Stuart Clary, Jul 24 2009
STATUS
approved