OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. For the factored closed form, let alpha equal the imaginary unit in Equation (21).
Index entries for linear recurrences with constant coefficients, signature (-20,-35,35,20,1).
FORMULA
a(n) = Sum_{k=1..n} (-1)^k F(2k)^3.
a(n) = (1/50)*(L(6n+3) - 6 L(2n+1) + 2) if n is even.
a(n) = -(1/50)*(L(6n+3) - 6 L(2n+1) - 2) if n is odd.
a(n) = (1/2) * F(n)^2 * F(n+1)^2 * (L(2n+1) + 2) if n is even.
a(n) = -(1/2) * F(n)^2 * F(n+1)^2 * (L(2n+1) - 2) if n is odd.
a(n) + 21*a(n-1) + 56*a(n-2) + 21*a(n-3) + a(n-4) = 4.
a(n) + 20*a(n-1) + 35*a(n-2) - 35*a(n-3) - 20*a(n-4) - a(n-5) = 0.
G.f.: (-x + 6*x^2 - x^3)/(1 + 20*x + 35*x^2 - 35*x^3 - 20*x^4 - x^5) = -x*(1 - 6*x + x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)).
MATHEMATICA
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k]^3, {k, 1, n} ], -Sum[ (-1)^k Fibonacci[-2k]^3, {k, 1, -n - 1} ] ]
LinearRecurrence[{-20, -35, 35, 20, 1}, {0, -1, 26, -486, 8775}, 50] (* or *) Table[(-1)^n*(1/50)*(LucasL[6 n + 3] - 6 LucasL[2 n + 1] + 2*(-1)^n), {n, 0, 25}] (* G. C. Greubel, Dec 10 2016 *)
PROG
(PARI) concat([0], Vec(-x*(1 - 6*x + x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 10 2016
(Magma) [(-1)^n*(1/50)*(Lucas(6*n+3)-6*Lucas(2*n+1)+2*(-1)^n): n in [0..20]]; // Vincenzo Librandi, Dec 10 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Stuart Clary, Jul 24 2009
STATUS
approved