login
A376036
E.g.f. satisfies A(x) = (exp(x / (1 - A(x))^3) - 1) / (1 - A(x)).
6
0, 1, 9, 190, 6435, 301126, 18007161, 1311752590, 112703870439, 11158543451926, 1250964512674533, 156642117419304958, 21668625406445359227, 3281750147124057118966, 540094007004476783547825, 95975344500184607391266734, 18314947854834472094038237647
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (3*n+2*k-2)!/(3*n+k-1)! * Stirling2(n,k).
E.g.f.: Series_Reversion( (1 - x)^3 * log(1 + x * (1 - x)) ).
PROG
(PARI) a(n) = sum(k=1, n, (3*n+2*k-2)!/(3*n+k-1)!*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 07 2024
STATUS
approved