login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274265
a(n) = (3*n - 1)^(n-1).
9
1, 5, 64, 1331, 38416, 1419857, 64000000, 3404825447, 208827064576, 14507145975869, 1125899906842624, 96549157373046875, 9065737908494995456, 925103102315013629321, 101938319743841411792896, 12063348350820368238715343, 1525878906250000000000000000
OFFSET
1,2
COMMENTS
Compare with A052752.
FORMULA
E.g.f. A(x) = 1 - exp(-1/3*T(3*x)) = x + 5*x^2/2! + 8^2*x^3/3! + 11^3*x^4/4! + 14^4*x^5/5! + ..., where T(x) = Sum_{n >= 1} n^(n-1)*x^n/n! is Euler's tree function - see A000169.
A(x) = series reversion( (1 - x)^3*log(1/(1 - x)) ). See A274266.
1 - A(x) = exp(-x/(1 - A(x))^3) = exp(-x/(exp(-3*x/(exp(-3*x/ ...))))).
1 - A(-x*exp(3*x)) = exp(x) = 1/(1 - A(x*exp(-3*x))).
1/(1 - A(x)) = Sum_{n >= 0} (3*n + 1)^(n-1)*x^n/n!, the e.g.f. for A052752.
MAPLE
A274265 := n -> (3*n - 1)^(n-1):
seq(A274265(n), n = 1..20);
MATHEMATICA
Table[(3*n-1)^(n-1), {n, 1, 25}] (* G. C. Greubel, Jun 19 2016 *)
PROG
(Magma) [(3*n-1)^(n-1): n in [1..20]]; // Vincenzo Librandi, Jun 20 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jun 19 2016
STATUS
approved