login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179156
G.f. satisfies: A(x) = B(x*A(x)) where B(x) = Sum_{n>=0} x^n/n!^2 and A(x) = Sum_{n>=0} a(n)*x^n/n!^2.
1
1, 1, 5, 64, 1577, 64026, 3887167, 330394800, 37487397201, 5477556616750, 1002201757761971, 224502014115239136, 60447250689539460925, 19264011725572422723292, 7172619686789755991626485
OFFSET
0,3
FORMULA
G.f.: A(x) = (1/x)*Series_Reversion(x/B(x)) where A(x/B(x)) = B(x) = Sum_{n>=0} x^n/n!^2.
a(n) = [x^n/n!^2] B(x)^(n+1)/(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 64*x^3/3!^2 + 1577*x^4/4!^2 +...
where A(x) = Sum_{n>=0} x^n*A(x)^n/n!^2.
Also, A(x/B(x)) = B(x) = 1 + x + x^2/2!^2 + x^3/3!^2 + x^4/4!^2 +...
PROG
(PARI) {a(n)=local(B=sum(m=0, n, x^m/m!^2+O(x^(n+2)))); n!^2*polcoeff(serreverse(x/B)/x, n)}
CROSSREFS
Cf. A217567.
Sequence in context: A274265 A073179 A192558 * A196304 A061684 A061698
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 04 2011
STATUS
approved