login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073179
a(n) = n!^2 times coefficient of x^n in Sum_{k>=0} x^k/k!^2/4^k*((2-x)/(1-x))^(2*k).
2
1, 1, 5, 64, 1417, 47801, 2278981, 145735360, 12026529089, 1243307884537, 157278532956301, 23885127975415136, 4286460830620175065, 897058398619374567889, 216462065577670278012557
OFFSET
0,3
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.65(b).
LINKS
FORMULA
Sum_{k>=0} x^k/k!^2/4^k*((2-x)/(1-x))^(2*k) = Sum_{n>=0} a(n)*x^n/n!^2. - Vladeta Jovovic, Aug 01 2006
BesselI(0,(2-x)/(1-x)*sqrt(x)) = Sum_{n>=0} a(n)*x^n/n!^2. - Vladeta Jovovic, Jun 20 2007
MATHEMATICA
CoefficientList[Series[BesselI[0, (2-x)/(1-x)*Sqrt[x]], {x, 0, 20}], x] * Range[0, 20]!^2 (* Vaclav Kotesovec, Apr 21 2014 *)
PROG
(PARI) {a(n)=if(n<0, 0, n!^2*polcoeff(sum(k=0, n, x^k/k!^2/4^k* ((2-x)/(1-x))^(2*k), x*O(x^n)), n))}
CROSSREFS
Cf. A049088.
Sequence in context: A255523 A193222 A274265 * A192558 A179156 A196304
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 19 2002
STATUS
approved