login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073178
a(n) = n!^2 times coefficient of x^n in e^(x*(3-x)/2/(1-x))/(1-x)^(1/2).
2
1, 2, 13, 180, 4266, 153180, 7725510, 519629040, 44880355800, 4835536256880, 635221698211800, 99872627051181600, 18507444606249152400, 3990439472567239692000, 990119486841576670378800
OFFSET
0,2
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.65(b).
LINKS
FORMULA
e^(x*(3-x)/2/(1-x))/(1-x)^(1/2) = Sum_{n>=0} a(n)*x^n/n!^2. - Vladeta Jovovic, Aug 01 2006
a(n) ~ sqrt(Pi)*n^(2*n+1/2)*exp(2*sqrt(n)-2*n). - Vaclav Kotesovec, Apr 21 2014
MATHEMATICA
CoefficientList[Series[E^(x*(3-x)/2/(1-x))/(1-x)^(1/2), {x, 0, 20}], x] * Range[0, 20]!^2 (* Vaclav Kotesovec, Apr 21 2014 *)
PROG
(PARI) a(n)=if(n<0, 0, n!^2*polcoeff(exp(x*(3-x)/2/(1-x)+x*O(x^n))/sqrt(1-x+x*O(x^n)), n))
CROSSREFS
Cf. A049088.
Sequence in context: A366194 A307655 A137610 * A193192 A356491 A378093
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 19 2002
STATUS
approved