login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356491
a(n) is the permanent of a symmetric Toeplitz matrix M(n) whose first row consists of prime(1), prime(2), ..., prime(n).
3
1, 2, 13, 184, 4745, 215442, 14998965, 1522204560, 208682406913, 37467772675962, 8809394996942597, 2597094620811897948, 954601857873086235553, 428809643170145564168434, 229499307540038336275308821, 144367721963876506217872778284, 106064861375232790889279725340713
OFFSET
0,2
COMMENTS
Conjecture: a(n) is prime only for n = 1 and 2.
FORMULA
A351021(n) <= a(n) <= A351022(n).
EXAMPLE
For n = 1 the matrix M(1) is
2
with permanent a(1) = 2.
For n = 2 the matrix M(2) is
2, 3
3, 2
with permanent a(2) = 13.
For n = 3 the matrix M(3) is
2, 3, 5
3, 2, 3
5, 3, 2
with permanent a(3) = 184.
MAPLE
A356491 := proc(n)
local c ;
if n =0 then
return 1 ;
end if;
LinearAlgebra[ToeplitzMatrix]([seq(ithprime(c), c=1..n)], n, symmetric) ;
LinearAlgebra[Permanent](%) ;
end proc:
seq(A356491(n), n=0..15) ; # R. J. Mathar, Jan 31 2023
MATHEMATICA
k[i_]:=Prime[i]; M[ n_]:=ToeplitzMatrix[Array[k, n]]; a[n_]:=Permanent[M[n]]; Join[{1}, Table[a[n], {n, 16}]]
PROG
(PARI) a(n) = matpermanent(apply(prime, matrix(n, n, i, j, abs(i-j)+1))); \\ Michel Marcus, Aug 12 2022
(Python)
from sympy import Matrix, prime
def A356491(n): return Matrix(n, n, [prime(abs(i-j)+1) for i in range(n) for j in range(n)]).per() if n else 1 # Chai Wah Wu, Aug 12 2022
CROSSREFS
Cf. A005843 (trace of the matrix M(n)), A309131 (k-superdiagonal sum of the matrix M(n)), A356483 (hafnian of the matrix M(2*n)), A356490 (determinant of the matrix M(n)).
Sequence in context: A137610 A073178 A193192 * A378093 A226865 A062156
KEYWORD
nonn
AUTHOR
Stefano Spezia, Aug 09 2022
STATUS
approved