login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351021
Minimal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.
8
1, 2, 13, 166, 4009, 169469, 10949857, 1078348288, 138679521597, 24402542896843, 5348124003487173
OFFSET
0,2
EXAMPLE
a(3) = 166:
3 2 5
2 3 2
5 2 3
a(4) = 4009:
3 2 5 7
2 3 2 5
5 2 3 2
7 5 2 3
a(5) = 169469:
5 2 3 7 11
2 5 2 3 7
3 2 5 2 3
7 3 2 5 2
11 7 3 2 5
PROG
(Python)
from itertools import permutations
from sympy import Matrix, prime
def A351021(n): return 1 if n == 0 else min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1, n+1))) # Chai Wah Wu, Jan 31 2022
CROSSREFS
Cf. A348891, A350939, A350955, A351022 (maximal).
Sequence in context: A360601 A177448 A258224 * A078363 A143851 A088316
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Jan 29 2022
EXTENSIONS
a(9) and a(10) from Lucas A. Brown, Sep 04 2022
STATUS
approved