login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Minimal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.
8

%I #19 Oct 13 2022 06:48:54

%S 1,2,13,166,4009,169469,10949857,1078348288,138679521597,

%T 24402542896843,5348124003487173

%N Minimal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.

%H Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A351021%2B2.sage">A351021+2.sage</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>

%e a(3) = 166:

%e 3 2 5

%e 2 3 2

%e 5 2 3

%e a(4) = 4009:

%e 3 2 5 7

%e 2 3 2 5

%e 5 2 3 2

%e 7 5 2 3

%e a(5) = 169469:

%e 5 2 3 7 11

%e 2 5 2 3 7

%e 3 2 5 2 3

%e 7 3 2 5 2

%e 11 7 3 2 5

%o (Python)

%o from itertools import permutations

%o from sympy import Matrix, prime

%o def A351021(n): return 1 if n == 0 else min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1,n+1))) # _Chai Wah Wu_, Jan 31 2022

%Y Cf. A348891, A350939, A350955, A351022 (maximal).

%K nonn,hard,more

%O 0,2

%A _Stefano Spezia_, Jan 29 2022

%E a(9) and a(10) from _Lucas A. Brown_, Sep 04 2022