login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351022
Maximal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.
8
1, 2, 13, 289, 13814, 1795898, 265709592, 70163924440, 20610999526800, 9097511018219760, 6845834489829830144
OFFSET
0,2
EXAMPLE
a(3) = 289:
3 5 2
5 3 5
2 5 3
a(4) = 13814:
5 7 3 2
7 5 7 3
3 7 5 7
2 3 7 5
a(5) = 1795898:
5 11 7 3 2
11 5 11 7 3
7 11 5 11 7
3 7 11 5 11
2 3 7 11 5
PROG
(Python)
from itertools import permutations
from sympy import Matrix, prime
def A351022(n): return 1 if n == 0 else max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1, n+1))) # Chai Wah Wu, Jan 31 2022
CROSSREFS
Cf. A350940, A350956, A351021 (minimal).
Sequence in context: A123113 A126742 A013051 * A012955 A357342 A011808
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Jan 29 2022
EXTENSIONS
a(9) and a(10) from Lucas A. Brown, Sep 04 2022
STATUS
approved