login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258224
Row sums of A258223.
3
1, 2, 13, 166, 3450, 105053, 4385297, 239389538, 16497800177, 1396841773631, 142194450687440, 17100401655609460, 2394468068218870494, 385647096554809325098, 70702689662684594772871, 14623755150209185924416598, 3385915623744083331349813602
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A258223(n,k).
MAPLE
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
A:= (n, k)-> b(2*n, 0, false, k):
T:= proc(n, k) option remember;
add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!
end:
a:= proc(n) option remember; add(T(n, k), k=0..n) end:
seq(a(n), n=0..20);
MATHEMATICA
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0,
If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1]
+ b[x - 1, y + 1, True, k]]];
A[n_, k_] := b[2*n, 0, False, k];
T[n_, k_] := Sum[A[n, i]*(-1)^(k - i)*Binomial[k, i], {i, 0, k}]/k!;
a[n_] := Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 28 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A132521 A360601 A177448 * A351021 A078363 A143851
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 23 2015
STATUS
approved