login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309131
Triangle read by rows: T(n, k) = (n - k)*prime(1 + k), with 0 <= k < n.
3
2, 4, 3, 6, 6, 5, 8, 9, 10, 7, 10, 12, 15, 14, 11, 12, 15, 20, 21, 22, 13, 14, 18, 25, 28, 33, 26, 17, 16, 21, 30, 35, 44, 39, 34, 19, 18, 24, 35, 42, 55, 52, 51, 38, 23, 20, 27, 40, 49, 66, 65, 68, 57, 46, 29, 22, 30, 45, 56, 77, 78, 85, 76, 69, 58, 31
OFFSET
1,1
COMMENTS
T(n, k) is the k-superdiagonal sum of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n).
The h-th subdiagonal of the triangle T gives the primes multiplied by (h + 1).
The k-th column of the triangle T gives the multiples of prime(1 + k).
Also array A(n, k) = n*prime(1 + k) read by ascending antidiagonals, with 0 <= k < n. - Michel Marcus, Jul 15 2019
FORMULA
T(n, k) = A025581(n, k)*A000040(1 + k).
EXAMPLE
The triangle T(n, k) begins:
---+-----------------------------------------------------
n\k| 0 1 2 3 4 5 6 7 8
---+-----------------------------------------------------
1 | 2
2 | 4 3
3 | 6 6 5
4 | 8 9 10 7
5 | 10 12 15 14 11
6 | 12 15 20 21 22 13
7 | 14 18 25 28 33 26 17
8 | 16 21 30 35 44 39 34 19
9 | 18 24 35 42 55 52 51 38 23
...
For n = 3 the matrix M(3) is
2, 3, 5
M_{2,1}, 2, 3
M_{3,1}, M_{3,2}, 2
and therefore T(3, 0) = 2 + 2 + 2 = 6, T(3, 1) = 3 + 3 = 6, and T(3, 2) = 5.
MAPLE
a:=(n, k)->(n-k)*ithprime(1+k): seq(seq(a(n, k), k=0..n-1), n=1..11);
MATHEMATICA
Flatten[Table[(n-k)*Prime[1+k], {n, 1, 11}, {k, 0, n-1}]]
PROG
(Magma) [[(n-k)*NthPrime(1+k): k in [0..n-1]]: n in [1..11]]; // triangle output
(PARI)
T(n, k) = (n - k)*prime(1 + k);
tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ triangle output
(Sage) [[(n-k)*Primes().unrank(k) for k in (0..n-1)] for n in (1..11)] # triangle output
CROSSREFS
Cf. A000040: diagonal; A001747: 1st subdiagonal; A001748: 2nd subdiagonal; A001749: 3rd subdiagonal; A001750: 4th subdiagonal; A005843: 0th column; A008585: 1st column; A008587: 2nd column; A008589: 3rd column; A008593: 4th column; A008595: 5th column; A008599: 6th column; A008601: 7th column; A014148: row sums; A138636: 5th subdiagonal; A272470: 6th subdiagonal.
Sequence in context: A375615 A143273 A141429 * A162953 A235451 A348915
KEYWORD
nonn,easy,tabl
AUTHOR
Stefano Spezia, Jul 14 2019
STATUS
approved