login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318173 The determinant of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n) and whose first column consists of prime(1), prime(n + 1), ..., prime(2*n - 1). 13
2, -11, 158, -6513, 202790, -12710761, 578257422, -45608219247, 8774909485920, -579515898830751, 115918088707226940, -16737522590543449641, 1282860173728469083872, -189053227741259934603831, 55171097827950314187327460, -16235234399834578732807710581 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The trace of the matrix M(n) is A005843(n).
The sum of the first row of the matrix M(n) is A007504(n).
The permanent of the matrix M(n) is A306457(n).
For n > 1, the subdiagonal sum of the matrix M(n) is A306192(n).
LINKS
Wikipedia, Toeplitz Matrix
EXAMPLE
For n = 1 the matrix M(1) is
2
with determinant Det(M(1)) = 2.
For n = 2 the matrix M(2) is
2, 3
5, 2
with Det(M(2)) = -11.
For n = 3 the matrix M(3) is
2, 3, 5
7, 2, 3
11, 7, 2
with Det(M(3)) = 158.
MAPLE
f:= proc(n) uses LinearAlgebra;
Determinant(ToeplitzMatrix([seq(ithprime(i), i=2*n-1..n+1, -1), seq(ithprime(i), i=1..n)]))
end proc:
map(f, [$1..20]); # Robert Israel, Aug 30 2018
MATHEMATICA
p[i_]:=Prime[i]; a[n_]:=Det[ToeplitzMatrix[Join[{p[1]}, Array[p, n-1, {n+1, 2*n-1}]], Array[p, n]]]; Array[a, 20]
PROG
(PARI) tm(n) = {my(m = matrix(n, n, i, j, if (i==1, prime(j), if (j==1, prime(n+i-1))))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
a(n) = matdet(tm(n)); \\ Michel Marcus, Mar 17 2019
CROSSREFS
Sequence in context: A058154 A275923 A288560 * A349639 A067968 A295269
KEYWORD
sign
AUTHOR
Stefano Spezia, Aug 20 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 11 23:02 EDT 2024. Contains 375842 sequences. (Running on oeis4.)