|
8, 12, 20, 28, 44, 52, 68, 76, 92, 116, 124, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 508, 524, 548, 556, 596, 604, 628, 652, 668, 692, 716, 724, 764, 772, 788, 796, 844, 892, 908, 916, 932, 956, 964, 1004, 1028, 1052, 1076, 1084, 1108, 1124, 1132, 1172, 1228, 1244, 1252
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers k such that Sum_{d|k} (-1)^d = A048272(k) = 2. - Benoit Cloitre, Apr 14 2002
Solutions of k'=k+4, where k' is the arithmetic derivative of k. - Paolo P. Lava, Feb 02 2012
|
|
LINKS
|
Paolo P. Lava, Table of n, a(n) for n = 1..20000
|
|
MATHEMATICA
|
4 * Prime[Range[66]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
|
|
PROG
|
(Haskell)
a001749 = (* 4) . a000040 -- Reinhard Zumkeller, Feb 20 2012
(PARI) a(n)=4*prime(n) \\ Charles R Greathouse IV, Mar 25 2014
(PARI) 4 * primes(66) \\ Joerg Arndt, Mar 26 2014
(Magma) [4*p: p in PrimesUpTo(300)]; // Vincenzo Librandi, Mar 26 2014
|
|
CROSSREFS
|
Cf. A000040, A003415, A048272.
Sequence in context: A084488 A337877 A211410 * A175786 A258848 A072843
Adjacent sequences: A001746 A001747 A001748 * A001750 A001751 A001752
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|