login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211410
Chen triprimes, triprimes (A014612) m such that m+2 is either prime or semiprime.
1
8, 12, 20, 27, 44, 45, 63, 75, 92, 99, 105, 116, 117, 125, 147, 153, 164, 165, 171, 175, 195, 207, 212, 231, 245, 255, 261, 275, 279, 285, 325, 332, 333, 345, 356, 357, 363, 369, 387, 399, 425, 429, 435, 452, 455, 465, 477, 483, 507, 524
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
27=3^3 and 45=3^2*9 are in the sequence because 27+2 = 29 and 45+2 = 47 are primes.
8=2^3, 12=2^2*3, and 20=2^2*5 are in the sequence because 8+2=10=2*5, 12+2=14=2*7, and 20+2=22=2*11 are semiprimes (A001358).
MAPLE
A211410 := proc(n)
option remember;
local a;
if n = 1 then
8;
else
for a from procname(n-1)+1 do
if numtheory[bigomega](a) = 3 then
if isprime(a+2) or numtheory[bigomega](a+2) = 2 then
return a;
end if;
end if;
end do:
end if;
end proc:
seq(A211410(n), n=1..80) ; # R. J. Mathar, Feb 10 2013
MATHEMATICA
Select[Range[600], PrimeOmega[#]==3&&PrimeOmega[#+2]<3&] (* Harvey P. Dale, Jul 15 2019 *)
PROG
(PARI) issemi(n)=bigomega(n)==2
list(lim)=my(v=List(), pq); forprime(p=2, lim\4, forprime(q=2, min(lim\2\p, p), pq=p*q; forprime(r=2, min(lim\pq, q), if(isprime(pq*r+2) || issemi(pq*r+2), listput(v, pq*r))))); Set(v) \\ Charles R Greathouse IV, Aug 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Feb 09 2013
STATUS
approved