login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (3*n - 1)^(n-1).
9

%I #10 Sep 08 2022 08:46:17

%S 1,5,64,1331,38416,1419857,64000000,3404825447,208827064576,

%T 14507145975869,1125899906842624,96549157373046875,

%U 9065737908494995456,925103102315013629321,101938319743841411792896,12063348350820368238715343,1525878906250000000000000000

%N a(n) = (3*n - 1)^(n-1).

%C Compare with A052752.

%F E.g.f. A(x) = 1 - exp(-1/3*T(3*x)) = x + 5*x^2/2! + 8^2*x^3/3! + 11^3*x^4/4! + 14^4*x^5/5! + ..., where T(x) = Sum_{n >= 1} n^(n-1)*x^n/n! is Euler's tree function - see A000169.

%F A(x) = series reversion( (1 - x)^3*log(1/(1 - x)) ). See A274266.

%F 1 - A(x) = exp(-x/(1 - A(x))^3) = exp(-x/(exp(-3*x/(exp(-3*x/ ...))))).

%F 1 - A(-x*exp(3*x)) = exp(x) = 1/(1 - A(x*exp(-3*x))).

%F 1/(1 - A(x)) = Sum_{n >= 0} (3*n + 1)^(n-1)*x^n/n!, the e.g.f. for A052752.

%p A274265 := n -> (3*n - 1)^(n-1):

%p seq(A274265(n), n = 1..20);

%t Table[(3*n-1)^(n-1), {n,1,25}] (* _G. C. Greubel_, Jun 19 2016 *)

%o (Magma) [(3*n-1)^(n-1): n in [1..20]]; // _Vincenzo Librandi_, Jun 20 2016

%Y Cf. A000169, A052752, A085527, A274266, A274267, A274269.

%K nonn,easy

%O 1,2

%A _Peter Bala_, Jun 19 2016