login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274262
Number of positive integers possessing exactly n Fibonacci representations (A000121).
1
1, 2, 4, 6, 8, 12, 12, 18, 20, 24, 20, 44, 24, 36, 48, 54, 32, 76, 36, 88, 72, 60, 44, 156, 72, 72, 100, 132, 56, 208, 60, 162, 120, 96, 144, 316, 72, 108, 144, 312, 80, 312, 84, 220, 304, 132, 92, 540, 156, 280, 192, 264, 104, 460, 240, 468, 216, 168, 116, 116, 120, 180, 456, 486, 288, 520, 132, 352, 264, 624, 140
OFFSET
1,2
LINKS
Zai-Qiao Bai and Steven R. Finch, Fibonacci and Lucas Representations, Fibonacci Quart. 54 (2016), no. 4, 319-326.
FORMULA
Let p, q, r be distinct primes and k be a positive integer.
If n = p^k then a(n) = 2*(p-1)*(2*p-1)^(k-1).
If n = p*q then a(n) = 6*(p-1)*(q-1).
If n = p^2*q then a(n) = 2*(p-1)*(8*p-5)*(q-1).
If n = p^3*q then a(n) = 2*(p-1)*(2*p-1)*(10*p-7)*(q-1).
If n = p^4*q then a(n) = 6*(p-1)*(2*p-1)^2*(4*p-3)*(q-1).
If n = p^2*q^2 then a(n) = 2*(p-1)*(q-1)*(26*p*q-18*p-18*q+13).
If n = p*q*r then a(n) = 26*(p-1)*(q-1)*(r-1).
EXAMPLE
Let phi denote the Euler totient.
The integer p^2*q has 8 multiplicative compositions:
(p^2*q), p^2*q, q*p^2, p*(p*q), (p*q)*p, q*p*p, p*q*p, p*p*q
from which
a(p^2*q) = 2*(3*phi(p^2)*phi(q) + 5*phi(p)^2*phi(q))
follows immediately.
CROSSREFS
Sequence in context: A278228 A028328 A360408 * A092990 A323505 A350355
KEYWORD
nonn
AUTHOR
Steven Finch, Jun 16 2016
STATUS
approved