OFFSET
1,2
LINKS
Zai-Qiao Bai and Steven R. Finch, Fibonacci and Lucas Representations, Fibonacci Quart. 54 (2016), no. 4, 319-326.
FORMULA
Let p, q, r be distinct primes and k be a positive integer.
If n = p^k then a(n) = 2*(p-1)*(2*p-1)^(k-1).
If n = p*q then a(n) = 6*(p-1)*(q-1).
If n = p^2*q then a(n) = 2*(p-1)*(8*p-5)*(q-1).
If n = p^3*q then a(n) = 2*(p-1)*(2*p-1)*(10*p-7)*(q-1).
If n = p^4*q then a(n) = 6*(p-1)*(2*p-1)^2*(4*p-3)*(q-1).
If n = p^2*q^2 then a(n) = 2*(p-1)*(q-1)*(26*p*q-18*p-18*q+13).
If n = p*q*r then a(n) = 26*(p-1)*(q-1)*(r-1).
EXAMPLE
Let phi denote the Euler totient.
The integer p^2*q has 8 multiplicative compositions:
(p^2*q), p^2*q, q*p^2, p*(p*q), (p*q)*p, q*p*p, p*q*p, p*p*q
from which
a(p^2*q) = 2*(3*phi(p^2)*phi(q) + 5*phi(p)^2*phi(q))
follows immediately.
CROSSREFS
KEYWORD
nonn
AUTHOR
Steven Finch, Jun 16 2016
STATUS
approved