login
A360408
The maximum number of facets among all symmetric edge polytopes for connected graphs on n vertices having m edges for n >= 2 and m between n-1 and binomial(n,2).
1
2, 4, 6, 8, 12, 12, 14, 16, 30, 36, 28, 28, 28, 30, 32, 60, 72, 72, 84, 68, 68, 60, 60, 60, 62, 64, 140, 180, 216, 168, 168, 196, 180, 148, 148, 132, 132, 124, 124, 124, 126, 128, 280, 360, 432, 432, 504, 408, 408, 392, 420, 360, 372, 324, 308, 276, 276, 260, 260, 252, 252, 252, 254
OFFSET
2,1
LINKS
B. Braun and K. Bruegge, Facets of Symmetric Edge Polytopes for Graphs with Few Vertices, arXiv:2201.13303 [math.CO], 2022.
EXAMPLE
The triangular array starts:
[2]: 2;
[3]: 4, 6;
[4]: 8, 12, 12, 14;
[5]: 16, 30, 36, 28, 28, 28, 30;
[6]: 32, 60, 72, 72, 84, 68, 68, 60, 60, 60, 62;
[7]: 64, 140, 180, 216, 168, 168, 196, 180, 148, 148, 132, 132, 124, 124, 124, 126
CROSSREFS
Sequence in context: A068065 A278228 A028328 * A274262 A092990 A323505
KEYWORD
nonn,tabf
AUTHOR
Benjamin Braun, Feb 06 2023
STATUS
approved