

A092990


Least product of the partitions of n into two parts with maximal tau value: let n = a+b be a partition of n, then a(n) = a*b such that tau(a*b) is maximal.


2



1, 2, 4, 6, 8, 12, 12, 18, 24, 24, 36, 36, 48, 36, 60, 60, 72, 60, 84, 90, 120, 120, 144, 144, 120, 180, 180, 180, 216, 240, 240, 252, 240, 300, 180, 336, 360, 360, 336, 420, 360, 420, 420, 504, 360, 420, 540, 360, 504, 540, 420, 360, 720, 600, 720, 540, 840, 840
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


LINKS

David A. Corneth, Table of n, a(n) for n = 2..10001


EXAMPLE

a(9) = 18 as 18 = 3 * 6 has 6 divisors. 20 = 4 * 5 also has 6 divisors, but 20 > 18.


PROG

(PARI) a(n) = {my(res = n1, r = numdiv(n1)); for(i = 2, (n+1)\2, c = numdiv(i*(ni)); if(c > r, r = c; res = i*(ni); ) ); res } \\ David A. Corneth, Dec 27 2020


CROSSREFS

Cf. A092991.
Cf. A000005.
Sequence in context: A278228 A028328 A274262 * A323505 A350355 A172311
Adjacent sequences: A092987 A092988 A092989 * A092991 A092992 A092993


KEYWORD

nonn


AUTHOR

Amarnath Murthy, Mar 28 2004


EXTENSIONS

Corrected and extended by Franklin T. AdamsWatters, Jun 14 2006


STATUS

approved



