%I
%S 1,2,4,6,8,12,12,18,24,24,36,36,48,36,60,60,72,60,84,90,120,120,144,
%T 144,120,180,180,180,216,240,240,252,240,300,180,336,360,360,336,420,
%U 360,420,420,504,360,420,540,360,504,540,420,360,720,600,720,540,840,840
%N Least product of the partitions of n into two parts with maximal tau value: let n = a+b be a partition of n, then a(n) = a*b such that tau(a*b) is maximal.
%H David A. Corneth, <a href="/A092990/b092990.txt">Table of n, a(n) for n = 2..10001</a>
%e a(9) = 18 as 18 = 3 * 6 has 6 divisors. 20 = 4 * 5 also has 6 divisors, but 20 > 18.
%o (PARI) a(n) = {my(res = n1, r = numdiv(n1)); for(i = 2, (n+1)\2, c = numdiv(i*(ni)); if(c > r, r = c; res = i*(ni); ) ); res } \\ _David A. Corneth_, Dec 27 2020
%Y Cf. A092991.
%Y Cf. A000005.
%K nonn
%O 2,2
%A _Amarnath Murthy_, Mar 28 2004
%E Corrected and extended by _Franklin T. AdamsWatters_, Jun 14 2006
