login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323505
Mirror image of (denominators of) Bernoulli tree, A106831.
9
1, 2, 4, 6, 8, 12, 12, 24, 16, 24, 24, 48, 24, 36, 48, 120, 32, 48, 48, 96, 48, 72, 96, 240, 48, 72, 72, 144, 96, 144, 240, 720, 64, 96, 96, 192, 96, 144, 192, 480, 96, 144, 144, 288, 192, 288, 480, 1440, 96, 144, 144, 288, 144, 216, 288, 720, 192, 288, 288, 576, 480, 720, 1440, 5040, 128, 192, 192, 384, 192, 288, 384, 960, 192, 288, 288
OFFSET
0,2
COMMENTS
In contrast to A106831 which follows Woon's original indexing (and orientation), this variant starts with value a(0) = 1, with the rest of terms having an index incremented by one, thus allowing for a simple recurrence.
Sequence contains only terms of A001013 and each a(n) is a multiple of A246660(n).
FORMULA
a(0) = 1; and for n > 0, if n is even, a(n) = 2*a(n/2), and if n is odd, a(n) = (A001511(n+1)+1-A036987(n)) * a((n-1)/2).
For n > 0, a(n) = b(A054429(n)), where b(n) = A106831(n-1).
a(n) = A246660(n) * A323506(n).
a(n) = A323508(A005940(1+n)).
EXAMPLE
This sequence can be represented as a binary tree:
1
|
...................2....................
4 6
8......../ \........12 12........./ \.......24
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 24 24 48 24 36 48 120
32 48 48 96 48 72 96 240 48 72 72 144 96 144 240 720
etc.
PROG
(PARI)
A001511(n) = (1+valuation(n, 2));
A036987(n) = !bitand(n, 1+n);
A323505(n) = if(!n, 1, if(!(n%2), 2*A323505(n/2), (A001511(n+1)+1-A036987(n))*A323505((n-1)/2)));
(PARI)
A054429(n) = if(!n, n, ((3<<#binary(n\2))-n-1)); \\ From A054429
A106831r1(n) = if(!n, 1, if(n%2, 2*A106831r1((n-1)/2), (1+A001511(n))*A106831r1(n/2))); \\ Recurrence for A106831, when prepended with 1, thus shifted one term right
A323505(n) = A106831r1(A054429(n));
CROSSREFS
Cf. A000079 (left edge), A000142 (right edge), A001013, A001511, A036987, A054429, A246660, A323506, A323508.
Cf. A106831 and also A005940, A283477, A322827 for other similar trees.
Sequence in context: A360408 A274262 A092990 * A350355 A172311 A103829
KEYWORD
nonn,tabf
AUTHOR
Antti Karttunen, Jan 16 2019
STATUS
approved