The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001013 Jordan-Polya numbers: products of factorial numbers A000142. (Formerly M0993 N0372) 41
 1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256, 288, 384, 432, 480, 512, 576, 720, 768, 864, 960, 1024, 1152, 1296, 1440, 1536, 1728, 1920, 2048, 2304, 2592, 2880, 3072, 3456, 3840, 4096, 4320, 4608, 5040, 5184, 5760 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also, numbers of the form 1^d_1*2^d_2*3^d_3*...*k^d_k where k, d_1, ..., d_k are natural numbers satisfying d_1 >= d_2 >= d_3 >= ... >= d_k >= 1. - N. J. A. Sloane, Jun 14 2015 Possible orders of automorphism groups of trees. Except for the numbers 2, 9 and 10 this sequence is conjectured to be the same as A034878. Equivalently, (a(n)/6)*(6x^2-6x+(6x-3)a(n)+2a(n)^2+1) = N^2 has an integer solution. - Ralf Stephan, Dec 04 2004 REFERENCES R. K. Guy, Unsolved Problems in Number Theory, B23. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe and R. Zumkeller, Table of n, a(n) for n = 1..10000, first 987 terms from T. D. Noe Robert A. Melter, Autometrized unary algebras, J. Combinatorial Theory 5 1968 21-29. Eric Weisstein's World of Mathematics, Factorial Products EXAMPLE 864 = (3!)^2*4!. MAPLE N:= 10000: # get all terms <= N S:= {1}: for k from 2 do   kf:= k!;   if kf > N then break fi;   S := S union {seq(seq(kf^j * s, j = 1 .. floor(log[kf](N/s))), s=S)}; od: S;   # if using Maple 11 or earlier, uncomment the next line: # sort(convert(S, list)); # Robert Israel, Sep 09 2014 MATHEMATICA For[p=0; a=f=Table[n!, {n, 1, 8}], p=!=a, p=a; a=Select[Union@@Outer[Times, f, a], #<=8!&]]; a PROG (Sage) # uses[prod_hull from A246663] prod_hull(factorial, 5760) # Peter Luschny, Sep 09 2014 (Haskell) import Data.Set (empty, fromList, deleteFindMin, union) import qualified Data.Set as Set (null) a001013 n = a001013_list !! (n-1) a001013_list = 1 : h 0 empty  (drop 2 a000142_list) where    h z s mcs xs'@(x:xs)     | Set.null s || x < m = h z (union s (fromList \$ map (* x) mcs)) mcs xs     | m == z = h m s' mcs xs'     | otherwise = m : h m (union s' (fromList (map (* m) \$ init (m:mcs)))) (m:mcs) xs'     where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Nov 13 2014 (PARI) list(lim, mx=lim)=if(lim<2, return()); my(v=, t=1); for(n=2, mx, t*=n; if(t>lim, break); v=concat(v, t*list(lim\t, t))); Set(v) \\ Charles R Greathouse IV, May 18 2015 CROSSREFS Cf. A034878, A093373 (complement). Sequence in context: A096850 A250270 A062847 * A115746 A025610 A242101 Adjacent sequences:  A001010 A001011 A001012 * A001014 A001015 A001016 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS More terms, formula from Christian G. Bower, Dec 15 1999 Edited by Dean Hickerson, Sep 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 25 04:05 EDT 2020. Contains 338011 sequences. (Running on oeis4.)