login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A344438
a(n) = 1 if n can be written as a product of factorials (A000142), 0 otherwise; Characteristic function of Jordan-Polya numbers (A001013).
2
1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
For all n, a(n) <= A322585(n).
PROG
(PARI)
search_up_to = 120;
A076934(n) = for(k=2, oo , if(n%k, return(n), n /= k));
A093411(n) = if(!n, n, if(n%2, n, A093411(A076934(n)))); \\ Antti Karttunen, May 19 2021
A001013list(lim, mx=lim)=if(lim<2, return([1])); my(v=[1], t=1); for(n=2, mx, t*=n; if(t>lim, break); v=concat(v, t*A001013list(lim\t, t))); Set(v) \\ From A001013
v001013 = A001013list(search_up_to);
A344438(n) = if(v001013[#v001013]<n, -(1/0), !!vecsearch(v001013, n));
CROSSREFS
Cf. A000142, A001013 (positions of ones), A093373 (of zeros), A322585.
Sequence in context: A380417 A141735 A343999 * A322585 A326956 A341629
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 19 2021
STATUS
approved