login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344436
Numbers k such that k, 2*k, 3*k, 4*k, 5*k and 6*k are anagrams and no digit of k is zero.
0
142857, 1429857, 14299857, 142999857, 1429999857, 14299999857, 142857142857, 142999999857, 1428571429857, 1429857142857, 1429999999857, 14285714299857, 14298571429857, 14299857142857, 14299999999857, 137428291864557, 137464282918557, 142829186455737
OFFSET
1,1
COMMENTS
All terms are divisible by 9.
a(1) = 143*999 = 1287*111;
a(2) = 143*9999 = 1287*1111;
a(7) = 143*999000999 = 1287*111000111; etc.
a(n) = k is odd. Proof: If k is even then 5*k ends in 0, which is forbidden by definition. - David A. Corneth, May 22 2021
EXAMPLE
142857, 1429857, and 14299857 are in the sequence:
.
k 2*k 3*k 4*k 5*k 6*k
-------- -------- -------- -------- -------- --------
142857 285714 428571 571428 714285 857142
1429857 2859714 4289571 5719428 7149285 8579142
14299857 28599714 42899571 57199428 71499285 85799142
PROG
(PARI) isok(k) = {my(d = vecsort(digits(k))); vecmin(d) && (d==vecsort(digits(2*k))) && (d==vecsort(digits(3*k))) && (d==vecsort(digits(4*k))) && (d==vecsort(digits(5*k))) && (d==vecsort(digits(6*k))); } \\ Michel Marcus, Jun 01 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Data corrected by David A. Corneth, May 22 2021
STATUS
approved