login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k, 2*k, 3*k, 4*k, 5*k and 6*k are anagrams and no digit of k is zero.
0

%I #55 Jun 02 2021 04:03:51

%S 142857,1429857,14299857,142999857,1429999857,14299999857,

%T 142857142857,142999999857,1428571429857,1429857142857,1429999999857,

%U 14285714299857,14298571429857,14299857142857,14299999999857,137428291864557,137464282918557,142829186455737

%N Numbers k such that k, 2*k, 3*k, 4*k, 5*k and 6*k are anagrams and no digit of k is zero.

%C All terms are divisible by 9.

%C a(1) = 143*999 = 1287*111;

%C a(2) = 143*9999 = 1287*1111;

%C a(7) = 143*999000999 = 1287*111000111; etc.

%C a(n) = k is odd. Proof: If k is even then 5*k ends in 0, which is forbidden by definition. - _David A. Corneth_, May 22 2021

%e 142857, 1429857, and 14299857 are in the sequence:

%e .

%e k 2*k 3*k 4*k 5*k 6*k

%e -------- -------- -------- -------- -------- --------

%e 142857 285714 428571 571428 714285 857142

%e 1429857 2859714 4289571 5719428 7149285 8579142

%e 14299857 28599714 42899571 57199428 71499285 85799142

%o (PARI) isok(k) = {my(d = vecsort(digits(k))); vecmin(d) && (d==vecsort(digits(2*k))) && (d==vecsort(digits(3*k))) && (d==vecsort(digits(4*k))) && (d==vecsort(digits(5*k))) && (d==vecsort(digits(6*k)));} \\ _Michel Marcus_, Jun 01 2021

%Y Cf. A023086, A245682, A323711.

%K nonn,base

%O 1,1

%A _Bhupendra Kumar Singh_, May 19 2021

%E Data corrected by _David A. Corneth_, May 22 2021