OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..386
FORMULA
If p is prime, a(p) = Sum_{d|p} sigma_d(d) = sigma_1(1) + sigma_p(p) = 1^1 + (1^p + p^p) = p^p + 2.
G.f.: Sum_{k>=1} sigma_k(k) * x^k/(1 - x^k). - Seiichi Manyama, Jul 25 2022
EXAMPLE
a(6) = Sum_{d|6} sigma_d(d) = (1^1) + (1^2 + 2^2) + (1^3 + 3^3) + (1^6 + 2^6 + 3^6 + 6^6) = 47484.
MATHEMATICA
Table[Sum[DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 20}]
PROG
(PARI) a(n) = sumdiv(n, d, sigma(d, d)); \\ Michel Marcus, May 19 2021
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k))) \\ Seiichi Manyama, Jul 25 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 19 2021
STATUS
approved