login
A266205
a(n) = G_n(6), where G is the Goodstein function defined in A266201.
20
6, 29, 257, 3125, 46655, 98039, 187243, 332147, 555551, 885775, 1357259, 2011162, 2895965, 4068068, 5592391, 7542974, 10003577, 13068280, 16842083, 21441506, 26995189, 33644492, 41544095, 50862597, 61783119, 74503901, 89238903, 106218405, 125689607, 147917229
OFFSET
0,1
LINKS
R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic 9, no. 2 (1944), 33-41.
EXAMPLE
G_1(6) = B_2(6) - 1 = B_2(2^2 + 2) - 1 = 3^3 + 3 - 1 = 29;
G_2(6) = B_3(G_1(6)) - 1 = B_3(3^3 + 2) - 1 = 4^4 + 2 - 1 = 257;
G_3(6) = B_4(G_2(6)) - 1 = 5^5 + 1 - 1 = 3125;
G_4(6) = B_5(G_3(6)) - 1 = 6^6 - 1 = 46655;
G_5(6) = B_6(G_4(6)) - 1 = 5*7^5 + 5*7^4 + 5*7^3 + 5*7^2 + 5*7 + 5 - 1 = 98039.
PROG
(PARI) lista(nn) = {print1(a = 6, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); } \\ Michel Marcus, Feb 22 2016
CROSSREFS
Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A059936: G_5(n), A266201: G_n(n).
Sequence in context: A209112 A205811 A143563 * A344434 A321141 A359053
KEYWORD
nonn,fini
AUTHOR
Natan Arie Consigli, Jan 23 2016
STATUS
approved