login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A266204
a(n) = G_n(5), where G_n(k) is the Goodstein function defined in A266201.
23
5, 27, 255, 467, 775, 1197, 1751, 2454, 3325, 4382, 5643, 7126, 8849, 10830, 13087, 15637, 18499, 21691, 25231, 29137, 33427, 38119, 43231, 48781, 54787, 61267, 68239, 75721, 83731, 92287, 101407, 111108, 121409, 132328, 143883, 156092, 168973, 182544, 196823
OFFSET
0,1
LINKS
R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic 9, no. 2 (1944), 33-41.
EXAMPLE
G_0(5) = 5;
G_1(5) = B_2(5) - 1 = B_2(2^2 + 1) - 1 = 27;
G_2(5) = B_3(3^3) - 1 = 4^4 - 1 = 255;
G_3(5) = B_4(3*4^3 + 3*4^2 + 3*4 + 3) - 1 = 3*5^3 + 3*5^2 + 3*5 + 3 - 1 = 467.
PROG
(PARI) bump(a, n) = {if (a < n, return (a)); my(pd = Pol(digits(a, n))); my(de = vector(poldegree(pd)+1, k, k--; polcoeff(pd, k))); my(bde = vector(#de, k, k--; bump(k, n))); my(q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^bde[k+1], 0))); return(subst(q, x, n+1)); }
lista(nn) = {print1(a = 5, ", "); for (n=2, nn, a = bump(a, n)-1; print1(a, ", "); ); } \\ Michel Marcus, Feb 28 2016
CROSSREFS
Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A059936: G_5(n), A266201: G_n(n).
Sequence in context: A342904 A230563 A204266 * A360770 A360726 A360712
KEYWORD
nonn,fini
AUTHOR
Natan Arie Consigli, Jan 22 2016
STATUS
approved