login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059933 Goodstein sequence starting with 16: to calculate a(n+1), write a(n) in the hereditary representation in base n+2, then bump the base to n+3, then subtract 1. 30
16, 7625597484986, 50973998591214355139406377, 53793641718868912174424175024032593379100060, 19916489515870532960258562190639398471599239042185934648024761145811, 5103708485122940631839901111036829791435007685667303872450435153015345686896530517814322070729709 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
See A266201 for definitions of and key links for hereditary representation and Goodstein sequences.
Goodstein's theorem shows that the Goodstein sequence G_n(k) eventually stabilizes and then decreases by 1 at each step until it reaches 0. Thereafter the values of G_n(k) < 0 are not part of the sequence. By Goodstein's theorem we conclude that G_n(k) is a finite sequence.
In this case when a(0) = G_0(16) = 16, there seems little possibility of describing how incredibly large n must be for a(n) to reach 0.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..18
R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.
Eric Weisstein's World of Mathematics, Goodstein Sequence
FORMULA
a(n) = G_n(16), where G is the function defined in A266201.
EXAMPLE
a(0) = 16 = 2^(2^2) so a(1) = 3^(3^3)-1 = 7625597484986.
So a(1) = 2*3^(2*3^2 + 2*3 + 2) + 2*3^(2*3^2 + 2*3 + 1) + 2*3^(2*3^2 + 2*3) + 2*3^(2*3^2 + 1*3 + 2) + 2*3^(2*3^2 + 1*3 + 1) + 2*3^(2*3^2 + 1*3) + 2*3^(2*3^2 + 2) + 2*3^(2*3^2 + 1) + 2*3^(2*3^2) + 2*3^(3^2 + 2*3 + 2) + 2*3^(3^2 + 2*3 + 1) + 2*3^(3^2 + 2*3) + 2*3^(3^2 + 1*3 + 2) + 2*3^(3^2 + 1*3 + 1) + 2*3^(3^2 + 1*3) + 2*3^(3^2 + 2) + 2*3^(3^2 + 1) + 2*3^(3^2) + 2*3^(2*3 + 2) + 2*3^(2*3 + 1) + 2*3^(2*3) + 2*3^(1*3 + 2) + 2*3^(1*3 + 1) + 2*3^(1*3) + 2*3^(2) + 2*3^(1) + 2,
leading to a(2) = 2*4^(2*4^2 + 2*4 + 2) + 2*4^(2*4^2 + 2*4 + 1) + 2*4^(2*4^2 + 2*4) + 2*4^(2*4^2 + 1*4 + 2) + 2*4^(2*4^2 + 1*4 + 1) + 2*4^(2*4^2 + 1*4) + 2*4^(2*4^2 + 2) + 2*4^(2*4^2 + 1) + 2*4^(2*4^2) + 2*4^(4^2 + 2*4 + 2) + 2*4^(4^2 + 2*4 + 1) + 2*4^(4^2 + 2*4) + 2*4^(4^2 + 1*4 + 2) + 2*4^(4^2 + 1*4 + 1) + 2*4^(4^2 + 1*4) + 2*4^(4^2 + 2) + 2*4^(4^2 + 1) + 2*4^(4^2) + 2*4^(2*4 + 2) + 2*4^(2*4 + 1) + 2*4^(2*4) + 2*4^(1*4 + 2) + 2*4^(1*4 + 1) + 2*4^(1*4) + 2*4^(2) + 2*4^(1) + 1 = 2*(4^32 + 4^16 + 1)*(4^8 + 4^4 + 1)*(4^2 + 4*1)-1 = 50973998591214355139406377.
PROG
(Haskell) -- See Link
(PARI) bump(a, n) = {if (a < n, return (a)); my(pd = Pol(digits(a, n))); my(de = vector(poldegree(pd)+1, k, k--; polcoeff(pd, k))); my(bde = vector(#de, k, k--; bump(k, n))); my(q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^bde[k+1], 0))); return(subst(q, x, n+1)); }
lista(nn) = {print1(a = 16, ", "); for (n=2, nn, a = bump(a, n)-1; print1(a, ", "); ); } \\ Michel Marcus, Feb 28 2016
(PARI) (B(n, b)=sum(i=1, #n=digits(n, b), n[i]*(b+1)^if(#n<b+i, #n-i, B(#n-i, b)))); vector(7, n, a=if(n>1, B(a, n)-1, 16)) \\ M. F. Hasler, Feb 12 2017
CROSSREFS
Cf. A266201: G_n(n).
Cf. A056193: G_n(4), A056004: G_1(n), A057650 G_2(n), A056041.
Cf. A215409: G_n(3), A222117: G_n(15), A211378: G_n(19), A266204: G_n(5), A266205: G_n(6).
Sequence in context: A058418 A372150 A291908 * A002488 A330716 A341690
KEYWORD
nonn,hard,fini
AUTHOR
Henry Bottomley, Feb 12 2001
EXTENSIONS
Definition corrected by N. J. A. Sloane, Mar 06 2006
Missing a(5) inserted and wrong a(7) replaced by Reinhard Zumkeller, Feb 13 2013
Revised by Natan Arie Consigli, Jan 23 2016
Offset changed to 0 by Nicholas Matteo, Aug 21 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 16 15:38 EDT 2024. Contains 375177 sequences. (Running on oeis4.)