login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372150
a(n) = Product_{k=1..n} k!^(k^2).
0
1, 1, 16, 161243136, 1953714516870533385423459188736, 18637697331204402735774894643901575833450808531469488619520000000000000000000000000
OFFSET
0,3
FORMULA
a(n) ~ (2*Pi)^(n^3/6 + n^2/4 + n/12) * n^(n^4/4 + 2*n^3/3 + n^2/2 + n/12 - 1/90) / (A^(1/6) * exp(5*n^4/16 + 5*n^3/9 + n^2/8 - n/12 - zeta(3)/(8*Pi^2) - zeta'(-3)/3 - 13/720)), where A is the Glaisher-Kinkelin constant A074962, zeta(3) = A002117, zeta'(-3) = A259068.
MATHEMATICA
Table[Product[k!^(k^2), {k, 1, n}], {n, 0, 6}]
CROSSREFS
Sequence in context: A369821 A013878 A058418 * A291908 A059933 A002488
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 20 2024
STATUS
approved