login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146754
Numbers m with the property that shifting the rightmost digit of m to the left end multiplies the number by 5.
8
142857, 142857142857, 142857142857142857, 142857142857142857142857, 142857142857142857142857142857, 142857142857142857142857142857142857, 102040816326530612244897959183673469387755, 122448979591836734693877551020408163265306, 142857142857142857142857142857142857142857
OFFSET
1,1
COMMENTS
From Seiichi Manyama, Aug 22 2017: (Start)
For k >= 1, (10^(6*k) - 1)/7 is a term.
For 5 <= a <= 9 and k >= 1, a*(10^(42*k) - 1)/49 is a term. (End)
LINKS
EXAMPLE
From Seiichi Manyama, Aug 22 2017: (Start)
b1 = 14285.
a(1) = b1*10 + 7,
5*a(1) = 714285 = 7*10^5 + b1.
b7 = 10204081632653061224489795918367346938775.
a(7) = b7*10 + 5,
5*a(7) = 510204081632653061224489795918367346938775 = 5*10^41 + b7. (End)
MAPLE
f:= proc(d) # solutions with d+1 digits
local b, R, a;
R:= NULL;
for b from ceil(49*10^(d-1)/(10^d - 1)) to 9 do
a:= (10^d-5)*b/49;
if a::integer then R:= R, 10*a+b fi
od;
R
end proc:
map(f, [$1..42]); # Robert Israel, Nov 05 2024
CROSSREFS
Cf. A146088 (k=2), A146561 (k=3), A146569 (k=4), this sequence (k=5), A291215 (k=7).
Sequence in context: A306265 A144504 A344436 * A180340 A004042 A145742
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, based on correspondence from William A. Hoffman III (whoff(AT)robill.com), Apr 10 2009
STATUS
approved