login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291215
Numbers m with the property that shifting the rightmost digit of m to the left end multiplies the number by 7.
6
1014492753623188405797, 1159420289855072463768, 1304347826086956521739, 10144927536231884057971014492753623188405797, 11594202898550724637681159420289855072463768, 13043478260869565217391304347826086956521739, 101449275362318840579710144927536231884057971014492753623188405797
OFFSET
1,1
COMMENTS
x = (10^21 - 7)/69 = 14492753623188405797.
a(1) = 7*x*10 + 7, a(2) = 8*x*10 + 8, a(3) = 9*x*10 + 9.
LINKS
FORMULA
From Robert Israel, Aug 22 2017: (Start)
a(3k-2) = 7(10^(22k)-1)/69.
a(3k-1) = 8(10^(22k)-1)/69.
a(3k) = 9(10^(22k)-1)/69.
a(n+6) = (10^22+1) a(n+3) - 10^22 a(n).
G.f.: (1304347826086956521739*x^2 + 1159420289855072463768*x + 1014492753623188405797)/
(10^22*x^6 - (10^22+1)*x^3 + 1). (End)
EXAMPLE
b = 101449275362318840579.
a(1) = b*10 + 7,
7*a(1) = 7101449275362318840579 = 7*10^21 + b.
MAPLE
seq(seq(y*((10^(22*k)-1)/69), y=7..9), k=1..6); # Robert Israel, Aug 22 2017
CROSSREFS
Cf. A146088 (k=2), A146561 (k=3), A146569 (k=4), A146754 (k=5).
Sequence in context: A181791 A217431 A173471 * A115541 A172564 A095438
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 21 2017
STATUS
approved