login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173471
a(n) is the number of (2n) X (15n) (0,1)-matrices with row sum 15 and column sum 2.
1
1, 865978374333905289360, 4029200036771699577090637149510314768593535481600, 385625168674948544730269377777065025703512934116695117242319729508073445176832000
OFFSET
1,2
REFERENCES
Gao, Shanzhen, and Matheis, Kenneth, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
LINKS
FORMULA
a(n)=\frac{(15n)!(2n)!}{2^{15n}}\sum_{r_{0}=0}^{2n}% \sum_{r_{1}=0}^{2n-r_{0}}\sum_{r_{2}=0}^{2n-r_{0}-r_{1}}% \sum_{r_{3}=0}^{2n-r_{0}-r_{1}-r_{2}}% \sum_{r_{4}=0}^{2n-r_{0}-r_{1}-r_{2}-r_{3}}% \sum_{r_{5}=0}^{2n-r_{0}-r_{1}-r_{2}-r_{3}-r_{4}}% \sum_{r_{6}=0}^{2n-r_{0}-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}}\frac{1}{% r_{0}!r_{1}!r_{2}!r_{3}!r_{4}!r_{5}!r_{6}!(2n-r_{0}-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6})!% }\frac{(-1)^{-6r_{1}-5r_{2}-4r_{3}-3r_{4}-2r_{5}-r_{6}+14n-7r_{0}\allowbreak }}{(15n+6r_{1}+5r_{2}+4r_{3}+3r_{4}+2r_{5}+r_{6}-14n+7r_{0}\allowbreak )!}$% \bigskip $\frac{(14r_{0}+12r_{1}+10r_{2}+8r_{3}+6r_{4}+4r_{5}+2r_{6}+% \allowbreak 2n)!}{% 15!^{r_{0}}13!^{r_{1}}(2!11!)^{r_{2}}(3!9!)^{r_{3}}(4!7!)^{r_{4}}(5!5!)^{r_{5}}(6!3!)^{r_{6}}7!^{2n-r_{0}-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6}}% }
a(n) ~ sqrt(Pi) * 3^(18*n + 1/2) * 5^(24*n + 1/2) * n^(30*n + 1/2) / (2^(7*n - 1) * 7^(4*n) * 11^(2*n) * 13^(2*n) * exp(30*n + 7)). - Vaclav Kotesovec, Oct 27 2023
MATHEMATICA
Table[1/2^(15*n) * (15*n)! * (2*n)! * Sum[((-1)^(-6*r1 - 5*r2 - 4*r3 - 3*r4 - 2*r5 - r6 + 14*n - 7*r0) * (14*r0 + 12*r1 + 10*r2 + 8*r3 + 6*r4 + 4*r5 + 2*r6 + 2*n)!) / ((r0! * r1! * r2! * r3! * r4! * r5! * r6! * (2*n - r0 - r1 - r2 - r3 - r4 - r5 - r6)!) * (15*n + 6*r1 + 5*r2 + 4*r3 + 3*r4 + 2*r5 + r6 - 14*n + 7*r0)! * (15!^r0 * 13!^r1 * (2!*11!)^r2 * (3!*9!)^r3 * (4!*7!)^r4 * (5!*5!)^r5 * (6!*3!)^r6 * 7!^(2*n - r0 - r1 - r2 - r3 - r4 - r5 - r6))), {r0, 0, 2*n}, {r1, 0, 2*n - r0}, {r2, 0, 2*n - r0 - r1}, {r3, 0, 2*n - r0 - r1 - r2}, {r4, 0, 2*n - r0 - r1 - r2 - r3}, {r5, 0, 2*n - r0 - r1 - r2 - r3 - r4}, {r6, 0, 2*n - r0 - r1 - r2 - r3 - r4 - r5}], {n, 1, 6}] (* Vaclav Kotesovec, Oct 23 2023 *)
CROSSREFS
Sequence in context: A239924 A181791 A217431 * A291215 A115541 A172564
KEYWORD
nonn
AUTHOR
Shanzhen Gao, Feb 19 2010
STATUS
approved