Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 27 2023 05:36:15
%S 1,865978374333905289360,
%T 4029200036771699577090637149510314768593535481600,
%U 385625168674948544730269377777065025703512934116695117242319729508073445176832000
%N a(n) is the number of (2n) X (15n) (0,1)-matrices with row sum 15 and column sum 2.
%D Gao, Shanzhen, and Matheis, Kenneth, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
%H Vaclav Kotesovec, <a href="/A173471/b173471.txt">Table of n, a(n) for n = 1..23</a>
%F a(n)=\frac{(15n)!(2n)!}{2^{15n}}\sum_{r_{0}=0}^{2n}% \sum_{r_{1}=0}^{2n-r_{0}}\sum_{r_{2}=0}^{2n-r_{0}-r_{1}}% \sum_{r_{3}=0}^{2n-r_{0}-r_{1}-r_{2}}% \sum_{r_{4}=0}^{2n-r_{0}-r_{1}-r_{2}-r_{3}}% \sum_{r_{5}=0}^{2n-r_{0}-r_{1}-r_{2}-r_{3}-r_{4}}% \sum_{r_{6}=0}^{2n-r_{0}-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}}\frac{1}{% r_{0}!r_{1}!r_{2}!r_{3}!r_{4}!r_{5}!r_{6}!(2n-r_{0}-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6})!% }\frac{(-1)^{-6r_{1}-5r_{2}-4r_{3}-3r_{4}-2r_{5}-r_{6}+14n-7r_{0}\allowbreak }}{(15n+6r_{1}+5r_{2}+4r_{3}+3r_{4}+2r_{5}+r_{6}-14n+7r_{0}\allowbreak )!}$% \bigskip $\frac{(14r_{0}+12r_{1}+10r_{2}+8r_{3}+6r_{4}+4r_{5}+2r_{6}+% \allowbreak 2n)!}{% 15!^{r_{0}}13!^{r_{1}}(2!11!)^{r_{2}}(3!9!)^{r_{3}}(4!7!)^{r_{4}}(5!5!)^{r_{5}}(6!3!)^{r_{6}}7!^{2n-r_{0}-r_{1}-r_{2}-r_{3}-r_{4}-r_{5}-r_{6}}% }
%F a(n) ~ sqrt(Pi) * 3^(18*n + 1/2) * 5^(24*n + 1/2) * n^(30*n + 1/2) / (2^(7*n - 1) * 7^(4*n) * 11^(2*n) * 13^(2*n) * exp(30*n + 7)). - _Vaclav Kotesovec_, Oct 27 2023
%t Table[1/2^(15*n) * (15*n)! * (2*n)! * Sum[((-1)^(-6*r1 - 5*r2 - 4*r3 - 3*r4 - 2*r5 - r6 + 14*n - 7*r0) * (14*r0 + 12*r1 + 10*r2 + 8*r3 + 6*r4 + 4*r5 + 2*r6 + 2*n)!) / ((r0! * r1! * r2! * r3! * r4! * r5! * r6! * (2*n - r0 - r1 - r2 - r3 - r4 - r5 - r6)!) * (15*n + 6*r1 + 5*r2 + 4*r3 + 3*r4 + 2*r5 + r6 - 14*n + 7*r0)! * (15!^r0 * 13!^r1 * (2!*11!)^r2 * (3!*9!)^r3 * (4!*7!)^r4 * (5!*5!)^r5 * (6!*3!)^r6 * 7!^(2*n - r0 - r1 - r2 - r3 - r4 - r5 - r6))), {r0, 0, 2*n}, {r1, 0, 2*n - r0}, {r2, 0, 2*n - r0 - r1}, {r3, 0, 2*n - r0 - r1 - r2}, {r4, 0, 2*n - r0 - r1 - r2 - r3}, {r5, 0, 2*n - r0 - r1 - r2 - r3 - r4}, {r6, 0, 2*n - r0 - r1 - r2 - r3 - r4 - r5}], {n, 1, 6}] (* _Vaclav Kotesovec_, Oct 23 2023 *)
%K nonn
%O 1,2
%A _Shanzhen Gao_, Feb 19 2010