Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Aug 22 2017 03:23:13
%S 1014492753623188405797,1159420289855072463768,1304347826086956521739,
%T 10144927536231884057971014492753623188405797,
%U 11594202898550724637681159420289855072463768,13043478260869565217391304347826086956521739,101449275362318840579710144927536231884057971014492753623188405797
%N Numbers m with the property that shifting the rightmost digit of m to the left end multiplies the number by 7.
%C x = (10^21 - 7)/69 = 14492753623188405797.
%C a(1) = 7*x*10 + 7, a(2) = 8*x*10 + 8, a(3) = 9*x*10 + 9.
%H Robert Israel, <a href="/A291215/b291215.txt">Table of n, a(n) for n = 1..135</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Parasitic_number">Parasitic number</a>.
%F From _Robert Israel_, Aug 22 2017: (Start)
%F a(3k-2) = 7(10^(22k)-1)/69.
%F a(3k-1) = 8(10^(22k)-1)/69.
%F a(3k) = 9(10^(22k)-1)/69.
%F a(n+6) = (10^22+1) a(n+3) - 10^22 a(n).
%F G.f.: (1304347826086956521739*x^2 + 1159420289855072463768*x + 1014492753623188405797)/
%F (10^22*x^6 - (10^22+1)*x^3 + 1). (End)
%e b = 101449275362318840579.
%e a(1) = b*10 + 7,
%e 7*a(1) = 7101449275362318840579 = 7*10^21 + b.
%p seq(seq(y*((10^(22*k)-1)/69),y=7..9),k=1..6); # _Robert Israel_, Aug 22 2017
%Y Cf. A146088 (k=2), A146561 (k=3), A146569 (k=4), A146754 (k=5).
%Y Cf. A092697, A097717.
%K nonn,base
%O 1,1
%A _Seiichi Manyama_, Aug 21 2017